DSC02031-1.jpg

Scott

Scott is a computational biologist passionate about developing usable tools for analyzing new types of high-throughput, biological data. He completed his PhD in Bioinformatics and Computational Biology in the lab of Dr. Chad Myers at the University of Minnesota, where his thesis work focused on the design and analysis of high-throughput, chemical-genetic interaction screens in yeast.

Outside of the lab, Scott enjoys international travel, playing the bass, cooking, and drinking non-IPA craft beer.

Papers:

Using BEAN-counter to quantify genetic interactions from multiplexed barcode sequencing experiments. Simpkins SW, Deshpande R, Nelson J, Li SC, Piotrowski JS, Ward HN, Yashiroda Y, Osada H, Yoshida M, Boone C, Myers CL. Nat. Protoc. 14, 415–440 (2019).

Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions. Simpkins SW, Nelson J, Deshpande R, Li SC, Piotrowski JS, Wilson EH, Gebre AA, Safizadeh H, Okamoto R, Yoshimura M, Costanzo M, Yashiroda Y, Ohya Y, Osada H, Yoshida M, Boone C, Myers CL. PLOS Comp. Biol. 14, e1006532 (2018).

Functional annotation of chemical libraries across diverse biological processes. *Piotrowski JS, *Li SC, *Deshpande R, *Simpkins SW, Nelson J, Yashiroda Y, Barber JM, Safizadeh H, Wilson E, Okada H, Gebre AA, Kubo K, Torres NP, LeBlanc MA, Andrusiak K, Okamoto R, Yoshimura M, DeRango-Adem E, van Leeuwen J, Shirahige K, Baryshnikova A, Brown GW, Hirano H, Costanzo M, Andrews B, Ohya Y, Osada H, Yoshida M, Myers CL, Boone C. Nat. Chem. Biol. 13, 982–993 (2017).